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TECHNICAL PAPER

SOLUTION OF THE ANGLES-ONLY SATELLITE TRACKING PROBLEM

INTRODUCTION

The determination of the orbit of a satellite vehicle or ballistic missile is obviously of great
practical importance. In the usual case, the azimuth, elevation, range, and range-rate of the target are
measured from an Earth-fixed radar site. When range and range-rate are not available, the determination
of the orbit from the azimuth(s), elevation(s), and the time(s) of the observation is referred to as the
“angles-only problem.”

A good summary of this problem is treated in reference 1. In that source, it is pointed out that the
problem was solved by Gauss, Laplace, and Escobal. These solutions seem to be far better known
among astronomers than among aerospace engineers.”

In the present report, another solution is derived which is particularly well suited to numerical
calculations. It is shown that all of the orbital elements (semi-major axis (a), eccentricity (e), argument
of perigee (@), inclination (I), and longitude of the ascending node (&])) can be derived from five
measurements of the azimuth (and the times of observation), or five measurements of the elevation (and
the times of observation). Once these elements have been isolated, the epoch can be derived from a
given time measurement.

An advantage of the present formulation is that it can be readily extended to the case of an
observer aboard a second satellite rather than an Earth-fixed observer. Since only line-of-sight angles
would be required to determine the orbit of a second satellite, the technique could be used to eliminate
range and range-rate hardware that is presently required for rendezvous. This option will be treated in a
future paper.

THE DRIVER PROGRAM

In the case of an actual radar installation, the azimuth and elevation angles, as well as the time of
the observations, would be recorded once a target is acquired. Since this report deals with theoretical
sightings rather than actual observations, it is necessary to build a driver program to simulate what a real
radar station would observe. To that end, a vehicle having arbitrary orbital elements is assumed and the
details of the sightings from a general configuration are derived. From a general configuration, specific
orbital elements are used for simulation. Once the elevation, azimuth, and time are calculated, the orbital
parameters are hidden from the isolation scheme. The isolation then has to rederive a complete
specification of the orbit from the table of elevation angle versus time (or the azimuth versus time).
Since a ballistic missile that impacts the Earth is obviously in a “terminated” orbit, the same theory
applies in either case, i.e., one can track an incoming missile using the present theory. For the ballistic
missile case, drag would be a significant factor, however. Drag is not included in the present report.

* The author wishes to thank Dr. John Hanson, EL-58, MSEC, for pointing out this literature on this subject.



Let (3, 7, %) describe an Earth-centered inertial coordinate system and locate a tracking station by
the polar coordinates (R,, ¢,, 6,) (fig. 1). We explicitly recognize the Earth’s rotation by setting
0, = @o(t). At the tracking station, a spherical coordinate system is constructed via the unit vectors
(4,, g, #y). Note that this coordinate system is modified from the usual convention in that the iy points
due south along the meridian rather than the conventional practice of orienting it to the north. The target
is located, relative to the tracking station by a distance, p, and two angles, the azimuth ¢, and the
elevation angle, B.

The unit vector transformation is:

4, = cos 6, -cos ¢, -1+cos 6, -sin ¢, -j+sin 6, ‘K,
fiy =sin ¢, -i+cos ¢, -7,
flg = sin 6, -cos ¢, -i+sin 6, sin ¢, - j—cos 6, -k,
along with the vector from the center of the Earth to the radar station, R'o, as
R,=R,cos 8, cos ¢, -i+R;cos 6, sin ¢, -j+Rsin 6, -k , ¢
where R, = |R |

In the local coordinates of the radar station, the p vector is given by

p = p-(sin B -#+cos B -sin o -fig+cos B -cos a-iy), 2)
where p =|p |

Inserting the expressions for 4, i, and i, into the expressions for g, one finds

p = p-[(sin B -cos 6, -cos ¢, —cos B -sin & sin @, +cos B -cos asin B, -cos ¢, )-1
+ (sin B -cos 6, -sin ¢, +cos 8 -sin or-cos ¢, +cos f -cos ¢ -sin 6, -sin ¢, )]
+(sin B -sin 6, —os B -cos & -cos 6, yk] . 3)

Define a vector 7 from the center of the Earth to the satellite. For reference 2, one can write 7 in
terms of the inclination, I, the right ascension of the ascending node, &, the argument of perigee, @, and
the true anomaly, f, as

7 = x4y J+z-k = r-[cos (f+@)-cos &—sin (f+@ )-sin & -cos I]-
+r-[cos (f+@)-sin &+sin (f+@)-cos &) -cos I1-]
+r-sin ( f+@)-sin [ x, @

where r =| 7| (see fig. 2). Also, one can write

r = a(1-e2)/(1+e-cos f ) = p/(1+e-cosf) , (5



where a is the semi-major axis of the orbit and e as the eccentricity and p = a- (1-€2).
Vectorially,
P=Rap . (6)
Equating the components of equation (6) from equations (5), (3), and (1),
p -(sin B -cos 6, -cos ¢, —cos B sin & sin ¢, +cos B -cos a-sin 6, -cos ¢, )
= r-[cos (f+8&)-cos &)-sin (f+@)-sin & -cos I1-R -cos G, -cos . @)
p -(sin 8 -cos 6, -sin ¢, +cos 3 -sin ¢c-cos ¢, +cos B -cos a-sin 6, -sin ¢,)
= r-[cos (f+@)-sin 8 +sin (f+&)-cos & -cos I1-R scos @, sin ¢ , )]
p-(sin B-sin 6, —cos B-cos a-cos 6,) = r-sin (f+@)-sin I-R ;sin 6, . €))
Taking the square root of the sum of the squares of equations (7), (8), and (9) gives
p = (r*+R%-2-r-R ;{[cos (f+&@)-cos B, -cos (8-¢, )-sin (f+@))-[cos 6, -cos I-sin (§—¢,)
—sin I'sin , 1})!2. (10)
Although the preceding equations can be solved directly for ¢ and f, a more subtle approach

yields additional quadrant information that can be valuable during numerical calculations. To this end,
one first calculates (8)-cos ¢,~(7)-sin ¢, to get

p-cos fBsin o= r-[cos (f+@)-sin (§-¢, }+sin (f+@)-cos I-cos (§)-¢, )] . (1)
Next, calculate (7)-cos ¢,+(8)-sin ¢, to yield
p -(sin B -cos 6, +cos B -cos a-sin 6,)
=r-[cos (f+@)-cos (§—@, )-sin (f+@)-cos Isin (§—¢, )-R, cos 6,]. (12)
From (12)-sin 8 ,~(9)-cos @, one has
p-cos f-cos a=r-{cos (f+@)-cos (JZ—¢0 )-sin @,
—sin (f+@®)-[cos I'sin (8)~¢, )-sin G, +sin I-cos 6,1} . (13)
Now, divide equation (11) by equation (13) and obtain the formula for the tangent of  as
tan o = [cos (f+@)-sin (§)—@, )+sin (f+&)-cos I-cos (8]-¢, )/ {cos (f+)-cos (81-¢, )-sin 6,
—sin (f+@)-[cos I-sin (62—% )-sin @, +sin I-cos 6,1} . (14)

Equation (14) may be rewritten in many forms, with one of the more useful being



tan o = [sin (§)-¢, )+tan (f+&)-cos I-cos (8)—¢, )/ cos § -{cos (§}-¢, )-tan 6,
—tan ( f+®)-[cos I'sin (52—(12) )-tan @, +sin I1}) . (15)

In equation (14), one can separately interrogate the numerator and denominator (interpreted as
sin o and cos @) to obtain the needed quadrant information on ¢ .1

The elevation, B, can be obtained in several ways. One such method would come from
multiplying equation (12) by cos 8, and equation (9) by sin 6, and adding to obtain

p-sin B =r-{cos (f+&)-cos (8-, )-cos 8, —sin (f+&)-[cos I-sin (§—¢, )-cos 6,
—sin Isin 8,]}—R,. (16)

Squaring and adding equations (11) and (13) yields a formula for cos 8, but this process destroys
information. Dividing equation (15) by that equation for cos B will yield a tangent formula which
involves r and R, but not p.

Another approach to determine [ is simply to utilize equation (10) to determine p and then use
either equation (11) or equation (13) to obtain 8 as an arc cosine. Equation (11) would be greatly
preferred since cos ¢ will usually vanish during a satellite pass.

The magnitude of the radius vector, r, which appears in many of the above equations involves
the semi-major axis, a, and the eccentricity, e. If one has full knowledge of the orbital elements a, e, I,
w, and &, and if one also knows the epoch (or a related time point), one can now obtain the values of p,
«, and f. The time reference serves to determine the true anomaly, f, and the position of the observation
site, since ¢, = @,(1).

For given values of the orbital elements and epoch (needed for r and ¢,), the path of computation
is now clear. Equation (10) yields the values of p, and equation (15) can be solved for ¢. Once p and
are known, equation (11) provides the value of f.

It is apparent that not all values of the epoch will yield values of (p, &, ) which correspond to
physical data that could be recorded at a given observation site. Subsidiary conditions must be imposed
on the epoch (as well as on 6, ) in order to guarantee that the satellite is above the horizon of a ground
plane which is tangent to the site. (“Over the horizon radar” is not considered here, but such a device
could easily be incorporated into these equations.) Physically, apparition of the target is expected when
B =0 and occultation when f = 7. These conditions will be fulfilled if

peR,=0.
Dotting equation (1) with equation (3) gives
cos (f+@)-cos (8-¢,)-cos 6,~sin (f+@)-[cos I'sin (§)-¢,)-cos 6,~sin I -sin 6,1 =R Jr. (17)

This equation is time dependent through the variables f, r, and ¢,. In order to recognize the explicit time
dependence of the longitude of the observation site, write

¢ > ¢ +ot. (18)
T The author wishes to thank Dr. Larry Mullins, MSFC, NASA, for pointing out the existence of this formula.
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Since the true anomaly, f, is time dependent, r must be expanded by equation (5). In terms of the
eccentric anomaly, &,

r=a[l-ecos (E)]. (19)

The eccentric anomaly is related to the time by Gauss’ equation (zero referenced to the time of perigee
passage) as

t=y(a/y) (E-esin &), (20)
and to the true anomaly, f, via
f=2tan }{y/[(1+e)/(1-e)] [tan (E2)]} . (21)

Since we are in the driver program, it is assumed that the orbital elements are all known. One
must isolate a value of the time such that equation (17) is satisfied, along with equations (18) through
(21). Since no useful analytic solution exists even for equation (20), there is little hope of solving
equation (17) analytically. For this reason, a Newton iteration was developed that defined

H = cos (f+)-cos (8~¢, )-cos 6, —sin (f+@)-[cos I-sin (§)—¢, )-cos 6,
—sin I-sin 6,]-R /r, (22)
in accord with equation (17). To isolate a zero of H, the iterator requires that one also know 0H/ox.
0H/0t = —{sin(f+®)-cos (8-, )-cos 6, +cos (f+&)-[cos I'sin (§-¢, )-cos 6,
—sin I'sin 8, 1}-4/(p- ) /r?~{cos (f+&)-sin (52—(1)0 )-cos 6,
+sin (f+@®)-[cos I-cos (62—¢0)-cos 6,] }-<$+(R Jp)esin ff(pu)ir? 23)
affot =/ [u-a-(1-ed)/ri=\/(p-u)ir?,
0/0t(1/r) = —(elp)-sin f-o/(p-u)/r?

where

and

have been used.

Although the use of equations (22) and (23) can isolate the apparition and occultation of the
target, it is convenient to employ approximate calculations to estimate those times as starting values for
the Newton iteration. This can be conveniently done if one assumes (here) that ¢ is zero, but allow f to
vary in accord with Keplerian dynamics.

To approximate the apparition and occultation of the target, from equation (13), one defines

Xo=cos (§—¢ )-cos §, , (24)
X = [cos I'sin (8§)~¢, )-cos §, —sin I'sin §, ], (25)

so that equation (13) can be written as
 Xy-cos (f+®)-X,-sin (f+&)-R,/r=0. (26)
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Expanding the double angle formulas in equation (22), and abbreviating

X, = Xycos w—X;-sin w, 27
X3 = Xysin w+X;-cos w, (28)

allows equation (22) to be written as
X,-cos f-X5-sin f—R,/r =0. (29)

Inserting r from equation (5) into equation (29) and cross multiplying by the denominator of r
gives

cos f-(X,~R,-e/lp)-sin f-X; =R -elp. (30)
Defining the variable 1) by
n =tan™! [X;/(X, -R e/ p)], (31)
and £ as
& =cos (R el p-\/ X 2+(X,-R -elp)*1}), (32)

allows one to write equation (30) as

cos (f+n)=cos €. (33)
Equation (29) has two solutions, either
f=&-n, (34)
or
f=2rn~&+n). (35)

Either the solution of equation (34) or the solution of equation (35) will correspond to apparition
on a nonrotating Earth; the other will correspond to occultation. Although Gauss’ equation assumes that
the initial time point occurs at perigee, it is not difficult to introduce a false time reference of zero at
apparition by defining this point as f, and then writing all time values, ¢, as t—,. Once the time of
apparition has been isolated, this time can be used as a starting point for the equations since the
calculation starts at that instant. The second solution for f (which could be the solution of either equation
(34) or (35)) then supplies a starting value for the Newton iteration of equation (22) so that the method
will converge on occultation rather than apparition.

An orbital table can now be produced by choosing an arbitrary number of points between the f,
(apparition) and the f; (occultation). Since each f and the orbital elements are known, one can specify all
the orbital parameters at these points. Table 1 shows the results of such a procedure for 15 points on a
typical orbit. The orbital elements were arbitrarily taken as a = 7,420 km, e = 0.1, @ = 25°, I = 35°, and
&) = 33°;, ¢, was taken as 77° and g, as 28.5°, and the Earth’s rotation rate, ¢ , was 27/(24-3,600).
Apparition occurred at f, = 8.481° (122.153 seconds past perigee), and occultation occurred at
fr=50.855° (749.288 seconds past perigee). The remaining entries of table 1 were calculated by the use



of equations (5) for r, (10) for p, (15) for ¢, and (11) for B. € can most easily be obtained from equation
(19). The equations that were used to compute the values of the orbital angles ¢ and 8 are from standard
celestial mechanics

¢ =tan™! {[tan (f+@®)-cos I+tan & ]/[1-tan (f+@)-cos I-tan 81} , (36)
and
6 = tan™! [tan I-sin (¢-&))] . (37

It is interesting to determine how large f can become in the field of view. This can be done by
requiring that df/df =0, and then solving for the corresponding value of f. When this value of f is
inserted into equation (11), the maximum value of 8 will be found. If one uses equation (11), that
procedure is algebraically rather messy. It is better to proceed by abbreviating

X = cos (f+®)-cos (8§)—¢, )-cos §, —sin (f+@)-[cos I'sin (§]—¢, ) -cos §
—sinIsin g, ], (38)

so that equations (10) and (11) can be written, respectively as

p =+ (P4R2-2.r-R,X)

(39
sin = (rX—R,)/p = (rX-R,)I\/ (r*+R2-2-r R, X) (40)

which immediately yields
tan B = (r-X-R,)/[rv/ (1-X?)] @D

If we now take the derivative of (41), equate df/0f to zero and clear, we find that the requirement for f3
to be a maximum is

R,-(1-X?)-@r/df)y+r-[r-R -X1-(0X/2f) = 0. (42)

From equation (15), we have
or/of =r2e-sin f/p, (43)
while equation (34) gives

0X/9f = —sin (f+@)-cos (8§]—¢, )-cos §, ~cos (f+®)-[cos I-sin (8¢, )-cos 6,
—sinl-sin 6, ]. (44)
Taking (34)-cos ( f+@)—(44)-sin ( f+®) gives an equation which can be solved for dX/df as
0X/0f = X-cot ( f+®)—cos (§]—¢, )-cos §, -csc (f+) . (45)
Inserting equations (15), (43), and (45) into (42) gives, finally,
X2.[e-cos @+cos (f+B)]-X-[cos (52—(1()) )-cos §, -(1+e-cos f)+(p/R,)-cos (f+@)]

+[(p/R,)-cos (62——(}()) )-cos § +e-sin f-sin (f+®)] =0. (46)



Equation (46) is cubic in the trigonometric functions of f. Even if one substitutes
sin2 f— 1—cos? f, the residual sin f terms will require an additional squaring operation, so the best that
we can hope for is a sixth order equation in cos f. This virtually precludes an analytical solution for f, but
numerical iteration works very well. For a numerical iteration, it is easier to use equation (42) (along
with equations (38), (43), and (44)) rather than equation (46) (along with equation (38)). Once f has been
isolated, the maximum value of S can be obtained from equation (41).

A far easier question is to determine whether or not 8 = 7/2 in the viewing field. From equation
(41), B canbe /2 only if X = £1. Using equation (38), this requirement implies that

cos (f+@)-cos §, -cos (8)—¢ )—sin (f+&)-[cos §, -cos I-sin (§]-¢, )
—sinI'sin §, ] =+1. 47
Setting
tan A= [cos §, -cos I-sin (cSZ—(jg) )—sin I-sin §, J/[cos §, -cos (cQ—q()) )]
= cos I-tan (8)—¢ )-sin Itan @, -sec (§]-¢,) , 48)
then, using spherical trigonometry,
tan A= cos I-tan (8§)—¢, )+sin I-tan I-tan (§)—¢, ) = tan (Q—q’g, )-secl . 49)
Equation (47) can now be written as
cos (f+@)-cos A-sin (f+®)-sin A==%1,
cos (f+m+A) ==+1 . (50)
Thus, B will achieve an angle of 7 /2 (or 37 /2) if either of the true anomalies
f=—tan™! [tan (§~¢, )-sec II-® , (51)
f=n—tan! [tan (§)-¢, )-sec [I-&, (52)
fall between apparition and occultation.

From equation (14), an additional datum is available. It is interesting to determine the value of
the true anomaly, f, which results in & = 0. For this condition, equation (14) requires that

sin (&)—¢, )+tan (f+®)-cos I-cos (§)-¢ ) =0,
tan (f+@) = —sec Itan (§)-¢) ) . (53)

If ¢ is now taken to be the longitude of the satellite (as opposed ¢,, the longitude of the tracking station)
a standard equation from celestial mechanics gives

tan ( f+@) = -sec I-tan (&§]—¢) . 54



For equations (52) and (53) to hold simultaneously, one must then have ¢ = ¢, as the condition for
a = 0. At this time

f=—{tan™! [sec I-tan (¢, )]+&)} . (55)

If the satellite was observed exactly at & = 0 (and the associated time), it would be possible to use this
datum to eliminate one orbital element in terms of the remaining four. However, nonlinearities probably
make such a procedure more trouble than it is worth.

THE SOLUTION OF THE ANGLES-ONLY PROBLEM

In order to obtain the data in table 1, it was assumed that the orbital elements were known, but
that assumption was used only to simulate data that could be recorded by an observer with full
knowledge of the orbit. A naive observer who is located at a radar station and restricted to measuring
only elevation and azimuth angles (as well as the time of the observations) could record only the sort of
information shown in table 2. The “angles only” problem can now be stated quantitatively as follows:
given the five sets of readings in table 2, isolate the five orbital elements, a, e, @, I, and &) that could
have produced those readings. It will be shown that all of the data of that table are not needed. Indeed,
one can isolate the required orbital elements from the five reading of either « and the time or S and the
time. But listing o and 8 and the time is redundant. In practice, since all of the reading will be noisy, it
would be prudent to solve the problem twice, with one solution involving o and the other solution
involving f and then to compare the two answers. Although only five readings can be used to produce
the results, these five readings are mathematically precise and thus are “safe.” In actual field work, one
would probably take many more readings and compute the elements of the orbits from many sets of five,
then statistically validate the final answers. These considerations will not be pursued in the present
report.

To begin, assume any convenient set of values for a, e, @, I, and &) . It is required only that they
be reasonable. In most cases, some guess can be made about the semi-major axis (for a satellite, require
that a-(1+e) > R,), the eccentricity (say 0 < e < 1) and the inclination (if the observation station is at
6,,1=6,).

One could proceed in the calculations in the following way. Once a set of orbital elements have
been assumed, one can obtain a value of € from equation (20) for a given time. Equation (21) then
produces the corresponding value of f. Once f has been calculated, obtain p from equation (10) and o
from equation (15). Equation (11) then gives the value of B. If the guesses about the orbital elements are
exact, then the recorded tabular values of orand 8 will agree with the calculated values of these variables
and the problem is solved.

Another procedure was found to be more convenient, however. Given a starting set of guesses
(a, e, @, 1, &), first calculate Xy, ..., X3 from equations (26) through (28). Additionally, calculate the
following convenient quantities:

X,=sin(8-¢ ), (56)
X5 =cos I-cos (§)-¢,) , (57
Xg = X4cos +Xssin @, _ (58)



X, = X,-sin @-X5-cos @, (59)

X3 = Xgtan f—X,sin o (60)
X9 = X7'tan ﬂ —X3‘Sin o, (61)
X,0=XgR,/p)sin a-e (62)

X = \/m . (63)

where the tabulated values of o are utilized. In the general case {sin (f) # 0], obtain & from:
E=tan™! (X,p/Xg) , (64)

and 7 from
1 =sin”! [(R,/p)sin a/Xy;]. (65)
The value of f which corresponds to the given 8 must be either

f=¢&-n, (66)
f=2n-(5+n). (67)

or

(The decision of which f to use requires some programming logic, governed by continuity.) Once the
value of fis obtained, from the inverse of equation (21),

£=2tan”! (VI(T-o)(1+e)]tan (7/2)] } , (68)

with equation (20) then supply the value of time which corresponds to the chosen set of orbital elements
at the isolated value of true anomaly.

Unless the orbital elements were guessed precisely, the time which has been computed will not
agree with the time which was recorded as a corresponding value to each given «, B, or the (a,f3) pair.
What is needed is an iteration scheme which will modify the values of the orbital elements in a
systematic manner until the calculated times agree with the actual times recorded at the observation site
(or the times given by the driver program). Notationally, let Ty,,..., Ts, be the “true” times and let
T},..., Ts be the times which are calculated from equation (16). Denote U; as

U; = Ty(a,e,,8,1)-T;, (i=0, ...4), (69)

and let an “i” subscript denote corresponding time-varying quantities (f, €, etc.).
Suppose that the orbital elements (a, ¢, @, 1, &) differ from the true values of the orbital
elements by amounts Aa, Ae, A®, Al, and Ad] (respectively). If these deviations were known precisely,

one would have

Ui(a+Aa, e+Ae, B+AD, §Q+A8, I+AI) = 0. (70)
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The obvious next step is to expand the U; set via Taylor’s theory to obtain a Newton iterator:
Ui(a+Aa, etAe, I+AL +AD, §]+AS8)) = Ui(a,e,],®,8))+(0U;/9a)-Aa+(0U;/de)
-Ae+(QU/0)-Al+(0U;/0®)-Aw+(0U;/d8))-A8) + ... =0, 71
where (i = 0, ..., 4). In matrix notation, with y; as any member of the ordered set of orbital elements
deviations (Aa, Ae, Al, A®, A8)), and x; and member of the ordered set of orbital elements (a, e, I, @,
8), equation (71) becomes:
W' = QUR) G)T (=0, ..., 4),(j=0, .., 4). (72)
Unless | (0Uy/9x;) | =0, one can solve for

) = EU/ax) " (U)'. (73)
The values of a, e, I, @, and § can now be modified by the substitutions
a — a+Aa
e = et+Ae
1— I+l ; (74)
w - W+Aw

8l — 8 +AS8) )

If the new values of the orbital elements do not drive all of the U; values to zero, the process can
be continued until convergence is achieved.

One still needs to obtain the derivatives of each of the U; with respect to each of the orbital
elements, i.e., the matrix elements of 0U;/dx;. Temporarily suppressing the “#”” subscript, it is convenient
to proceed through a “chain calculation” as:

oU/lda = (3/2)-\/ (alu) -(E-e-sin E)+y/ (a3/p) (1-e-cos £)-0E/0a

=V (@ -[(3/2) -(E-e-sin E)+a-(1-e-cos £)-0E9a], T
dU/de = y/(a3Iu) -[(1-e-cos £)-0E/de], (76)
QUR® = /(@) -[(1-e-cos £)-0€/0), (77)
QUIIQ = y/(@31p) [(1-e-cos £)-0E08], (78)
QUIAI = \/(@3Ip) -[(1-e-cos £)-0€0I]. (79)
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From equation (68):

0E/da = (rla)-dffda | (80)

0Ede = [1/y/(1-€2) 1[(df/de)la—sin fIp], (81)
OED = (rla)-df 19D, (82)

AEA8) = (rla)-9f 108, (83)

o0& = (rla)-dfIdl (84)

One will also need the derivatives of £ from equation (64) and 1 from equation (65):

_ —[R,sin - (a-0X;,/0a+X ) 85)
[a-X1;-y/ (a2 (1-€2)2-X2—[R,-sin (0)]D)]

S

on _ {[R,sin al/[X;;(1-eD)]}-{2-e-X|~(1-e2)-0X /0]

86
de v (@2 (1-e)2 X} -[R,sin (0)])]) (80
o1 /dx = ([R,sin & )/X;,)-0X, 1/ax)/\/ (@2 (1-22X, R sin 2 1) ], (87)
where x = I, w, or §. For the derivatives of &, one has
OE/x = [Xo(9X 1¢/0x)-X 1 (0K o/dx) /[X g +X 1]
(88)

= [Xg(3X /%)X 1 (X /0)V/X ;2
(for x any orbital element).

Using the given expression of f, equation (66), one is now in a position to calculate the
derivatives of f from, say:

of/0x = 0&/0x—0n/ox. (89)

The next task is to calculate the derivatives for Xy, ..., X;. These follow (with x as a generic
orbital element):

AXy/d8) = ~sin (&4, )-cos 6, , (90)

X fox=0, (x#&), 1)

0X,/0I = —sin Isin (8)—¢, )-cos §, —os I'sin §, , (92)
0X /98] = cos I-cos(8]-¢, )-cos §, , (93)
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0X,/0x=0, (x=a,e, or @),
9X,/0x = (9X/dx)-cos B—(9X,/0x)-sin @, (x # &),
0X,/0 = (X /o w)-cos &B—~(0X,/0®)-sin &-X,sin -X,-cos @ ,
9X4/dx = (9X/dx)-sin B—(3X ,/0x)-cos @, (x # ),
0X3/08 = (3X/0@)-sin B+(0X ,/0d)-cos @+Xcos &-X,-sin @,
| 8X4/8m—¢2, ),
AX,/0x =0, (x# &),
0X5/0I = —sin I-cos (§)-¢, ) ,
0X5/08) =—cos I'sin (-4, ) ,
0Xs/dx=0 (x#1,x+ &),
0X¢/0x = (0X4/0x)-cos @+(0X5/dx)-sin @, (x # &),
0X /0B = (0X4/0®)-cos @+(0X5/0%@)-sin &-X, sin &+Xs-cos @ ,
9X,/3x = (X ,/3x)-sin B—(9X5/dx)-cos B, (x # &),
X419 = (0X /%) sin B~(dX5/d®)-cos t+X,-cos B+Xs-sin @ ,
0Xg/0x = (0X¢/dx)-tan ff —(9X,/dx)-sin o ,
Xo/0x = (0X,/0x)-tan B~(9X4/dx)-sin c,
0X;/ox = dXg/ox, (x #e),
X, fde = 0Xg/de+R ,sin o,

aXl l/ax = [Xg'(aX9/aX)+X10'(aXlO/aX)]IIXI 1

%94)
(95)
(96)
o7
(98)
99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)
(109)
(110)
(111)

(112)

If the program utilizes both the o and f table, the development is now complete. Once the orbital
elements have been chosen, we can obtain the derivatives of Xj,..., X1; with respect to (a, e, @, I, §)
each orbital element from equations (90) through (112). Given these derivatives, use equations (85)
through (88) to obtain the derivatives of 77 and £ with respect to the orbital elements, and subsequently,
the derivatives of f with respect to the same variables. That allows a computation of the derivatives of €
(equations (80) though (84)) and finally the derivatives of U from equations (75) through (79). This
yields the derivatives of a five-dimensional vector, say (dUp/0x). The process is repeated for each of the
other data sets (o, f;, T, to construct the matrix shown in equation (72). Matrix manipulation then
yields the corrections to the orbital elements from equation(s) (74).
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If the information on the azimuth, ¢ (or ), is not used, the situation is more complicated since o
must be taken as another variable and equations (60), (61) and (62) must account for the fact that « is
defined in terms of the assumed orbital elements. From equation (11), one can use equations (58) and
(59) to write

sin o = r-(Xg-cos f—X5sin f)/(p -cos B), (113)

while equation (10) becomes

p = A [r24+R%2:1-R,(Xycos f-Xysin f)]. (114)

Equations (107) through (111) would be modified to read:

0X/0x = (9X4/0x)-tan B —~(0X,/0x)-sin x—X,-cos o -da/ox, (115)
0Xy/dx = (0X,/0x)-tan B —(0X3/dx)-sin r—X;-cos ¢x-dax/ox, (116)

0X,(/0x = 0Xg/dx+R,/p)-cos a-0a/ox (x+e), , 117)
39X, /de = dXg/de +R,sin ct+(R,/p)-cos at-dae/dx (x=e). (118)

From equation (114) comes
0p 10x = {(r-R,)-0r/dx—r-R -[cos f-(0X,/0x—X5-0f/0x)
— sin f-(0X5/0x+X,-0flox]}/p, (119)
which is needed to evaluate dov/ dx; from equation (113) one obtains both
cos o -00t/dx = {dr/dx-(Xgcos f-Xysin f)+r-[(0Xs/0x—X-0f/0x)-cos f

—(Xg0f10x+0X5/0x)-sin f1}/(p -cos B )-r-(Xgcos f-Xq-sin f)-0p/ot/(p Z.cos B), (120)
and

cos o = \/ [p 2.cos? B —r2-(X6-cos f—Xysin f)2] /(p-cos B). (121)

In order to take the derivatives of o with respect to each orbital element, one would also need the
derivatives of r with respect to the same variables. Using equation (19), one finds

dr/da = 1—e-cos E+a-e-sin £9E/da, (122)

or/de = a-cos E+a-e-sin £IEde | (123)

Using equations (115) through (123) allows the measured values for & to be ignored, but
ignoring the measured values is paid for with the need for increased computation. Similar comments are
applicable to the case where tabular values of & are assumed to be known but f§ is treated as a
computable quantity. In the numerical results that are presented in the next section, tabular values of
both  and B were assumed to be known.
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NUMERICAL RESULTS

The above theory was programmed in COMMON LISP on a Symbolics 6370. That platform
allows for rapid prototyping and ease of equation development. The entire set of equations performed
quite well; the Newton iteration scheme can converge a correct set of orbital elements from rather bad
guesses.

There has been an implicit assumption that there is a unique set of orbital elements which will
produce the given table of observations. Although no attempt was made to establish uniqueness, one
case was inadvertently found where the solution was not mathematically unique, but the extraneous
solution did not correspond to a physically realistic orbit. Specifically, for the inputs of o, §, and time
from a two-dimensional suborbital case (with true a = 6,018.739, ¢ = 0.724, @ =225,1=0, and §] = 0),
started from a rather precise initial set of guesses that assumed a = 6,020, e = 0.5, @ = 350, I=0, &) = 0.
The convergence criteria was met with a = 9,666.27930, ¢ = -0.17980, & = -25.54499, =0, and § =0.
This is not a physically realistic orbit (e < 0, a > 0), however, and is easily eliminated by requiring that
e 2 0. Additional constraints should be added to the iteration scheme, i.e., require that a-(1+e) = R,,
-2 <1< 7/2, and 0 < §) < 7. In the case of tracking a comet or an asteroid (which are usually elliptical
with respect to the Sun but hyperbolic with respect to the Earth), alternative constraints obviously would
have to be used.

In regard to two-dimensional iterations, in general, note that the convergence scheme is valid for
those cases provided that the reduced dimension of the iteration space is accounted for. A three-
dimensional iteration, faced with a two-dimensional problem, will encounter a singular matrix unless
precautions are taken. Furthermore, when a two-dimensional problem is undertaken, one must take
o = 37/2 due to the choice of the coordinate system.

During the computation procedure, the equation for 7, equation (31), was particularly
treacherous in that it is rather easy for (R,/p)sin a/X11 to underflow or overflow from the range
-1 < sin"! £ 1 and produce complex values for o. The LISP language easily handled the complex values,
but it balked at attempting to double-float the results. This was handled by the crude, though effective,
artifice of simply setting « to either 37/2 or n/2 depending upon the direction in which the insult
occurred. As the iteration scheme approached more accurate values of the orbital elements, the problem
disappeared. Iteration to isolate a satellite orbit tends to monotone convergence, but isolation of very
short range missiles (~200 km) becomes extremely difficult since the trajectories have eccentricities that
approach unity. For those cases, the Newton iteration, as presented here, is virtually inapplicable.

Another difficulty, often present in Newtonian iteration schemes, was that the corrections for Aa,
Ae, A@ , Al and AS) were often so large that the iteration scheme began to wander aimlessly. Two
methods were used to circumvent this problem. One option measured the magnitude of the errors and
adjusted a “creep factor” according to the size of the errors. Another scheme placed absolute bounds on
the allowable changes that could be made by any variable in a given iteration. This report was written to
demonstrate a new approach to the angles-only problem, so no attempt was made to develop an optimal
iteration scheme. Since the angles-only problem is important in the real world, it is expected that specific
iteration schemes to optimize convergence may be forthcoming in the future.

Two illustrative examples are given here to demonstrate the use of the equations given earlier. As
mentioned previously, the first of these is a rather standard satellite orbit which is numerically described
in Table 1; the fact that 16 sets of data are recorded is purely arbitrary. A subset of the data displayed in
Table 1 is shown in Table 2. This is the entire set of data sent to the iteration scheme. As explained, the
numerical examples used the values of o and f along the time of the observations, so that neither & nor
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B were calculated from the other as a part of the study. The iteration scheme converged the proper
elements from the input guesses in 26 iterations (Table 3). Note that the figure of merit for the
convergence (last column, Table 3) is monotone decreasing. The error calculation is defined as

N UB+URFUR+URUR .

Table 4 demonstrates the same data as Table 1, but this time for a suborbital vehicle. The case
was deliberately taken as equatorial so that a two-dimensional iteration could be demonstrated. Since
only three orbital elements (a, e, @ ) need to be isolated, one can make-do with only three readings. For
a two-dimensional case, if the tracking station is located in the plane of the orbit, the azimuth angle, o, is
meaningless. Thus, only three readings are needed. Again, the end points were B = 0 or 8 = 7 were
included, but this is arbitrary. Table 4 shows the results of the iteration scheme from very poor initial
guesses; indeed, the guesses are about as bad as they can meaningfully be. The iteration scheme does not
display monotone convergence and appears to wander aimless for 61 of the 107 iterations that were
needed to converge the case.

An attempt was made to further stress the iteration scheme by requesting an isolation of the 200-
km range suborbital planar case, but convergence was never attained. Certainly, the minimal Newton
iteration presented here can be strengthened by any of several known methods.

CONCLUSIONS

The preceding theory has derived another solution to the “angles-only” problem. This method,
possibly used in conjunction with the alternative methods covered in reference 1, has the potential to
decrease the amount of hardware that is currently required for rendezvous and missile tracking.

The numerical work that is presented demonstrates that the theory yields a practical scheme that
actually solves the problem. Unfortunately, it also indicates that additional research is required to extend
numerical convergence to eccentricities which are very close to unity.

A planned future paper will relax the requirement of an Earth-fixed observer and treat the case of
an observer in an orbiting satellite.
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SEMI-MAJOR RARIS (A)=7428. KH,

RUE ANOMOLY, DEG.

f=8.48133668

Table 1. First example.

ECC=.18080 INC(1)=35.8@@ DEG., ARG. PERIGEE(w)=25.068 DEG., LONG. ASC. NODE(£)=33.808 DEG.
APPARITION OCCURS AT f=8.481 deg. [7=122.154 sec.] AND OCCULTATION OCCURS AT £=58.309 deg. [T=748.883 sec.]

RADIUS, KHM.
r=6684,64603564

RANGE, KN.
p=2001 .40179057

ECC. ANOHOLY,
£=7.67420293

DEG. TINME,

1=122.15382475

SEC.

T
e
1 f=11.33937828 r=6689.87187827 P=17082.55541086 £=10.26292799 T=163.40242366
2 £=14.192308929 r=6696,58128891 P=14@6.84597518 £€=12.84934444 7=2084.65102256
3 f=17.03891388 r=6784,75468903 P=1117.35905908 €215.43288791 T7=245.89962147
4 £=19.87797554 r=6714,36839648 P=841.02426446 £=18.081308611 T1=287.14822037
5 £=22.70832198 r=6725,39470844 P=596.649083616 £=20.58916104 1=328.39681928
6 £=25,52882210 r=6737.806216907 P=448.75876806 €=23.16083897 1=369.64541818
7 £=28.33839058 r=6751.55569755 P=478.560898382 £€=25,72751237 T7=410.89401708
8 £=381.13599196 r=6766.61683174 P=668.49278487 £€=28.28872158 T=452.14261599
9 £=33.92864421 r=6782.94395698 P=914.90251289 £=368.84399635 T=493.39121489
10 £=86.69142178 r=6880.49251644 P=1192.33738686 £€=33,39289717 T=534.63581380
11 £=89.44745811 r=6819,21532193 P=1479.03113160 £€=35,93500846 T=575.88841270
12 £=42.18794762 r=6839.086274951 P=1769.64478692 £=38.46993949 7=617.13701161
13 f=44.91214716 r=6859, 98382993 P=2061.70019523 £=48,99732514 T=658.38561051
14 f=47.61937693 r=6881,92250357 P=2353.86307735 £=43.51682652 1=699.63420942
1S £=508.30382695 r=6904,825880083 P=2645.32323647 £=46.02813134 T1=740.88288832
RZIMUTH, DEG. ELEVATION, DEG. LONGITUDE, DEG. LATITUDE, DEG. LONGITUE (RADAR) DEG.
@ a=-58.15803437 p=~.80660113 $=61.44889048 ©€=18.44669388 $s=77 .00000080
1 a=-57.88645790 B=3.18616670 $=64.07291615 ©=19.869708746 Ps=77.17186916
2 a=-55.34118427 B=6.99699965 $=66.73908244 ©=21,25119328 $s=77,34373832
3 a=~52.71266671 p=12.25898824 $=69.44867889 ©=22.58706924 P=s=77.51568749
4 a=-48.,088953651 $=26.15528607 $=72.20318392 ©=23,87327468 $s=77.687247665
S a=-37.56514360 $=33.45800818 $=75.08308642 ©=25.19579627 $s=77.85934581
6 a=-4.22628134 B=53.59666411 $=77.84862649 ©=26.26869784 $5=78.03121497
7 a=64.33158348 B=128.720817840 $=808.73965749 6=27.89415375 $s=78.26308413
8 a=90.55732702 B=146.32232990 $=83.67519231 ©6=28.44248594 $s=78.37495330
9 a=99.36873597 . B=157.36821261 $=86.65367667 6=29.42228398 $s=78.54682246
18 o=103.52061532 B=164.180876975 $=89.67287325 ©6=30.33004762 $s=78.71869162
11 a=105.96245379 p=168.890852738 $=92,72983399 ©6=31.163030874 $s=78.89056078
12 a=107.42823026 B=172.45952834 $=95.82892612 ©=31,91848556 $s=79.086242995
13 a=108.47830717 B=175.35471125 $=98.94178883 ©=32.59410553 $s=79.23429911
14 0=109,237985338 p=177.82162762 $=182,088743269 6=33.187968516 $s=79.40616827
15 a=109.88439856 B=179.59999761 $=1085.25227275 6=33.69865517 $s=79.57803743
Table 2. Representative data of entire package sent to iterator.
(H, %0, &, Oo, Ro ASSUMED KNOWN)
7=122.15382475 0 a=-58,15003437 =-,008008113
T=276.83607064 1 a=-49.49765192 p=17.81825854
T=431.51831654 2 a=81.48848503 B=41.79462703
T1=586.208056243 3 a=106.34412297 p=169.86594977
1=740.882808832 4 a=1089.808439856 £=179.99999761
Table 3. Results of iteration scheme.
ORIGINAL BGUESSES: R=7800.808088 km Ecc=.80880 Io=27.008080 deg w=.80080 deg =.80008 deg
ITERATION #0 R=6997.11928 km Ecc=.88153 w=80,76312 deg I0=27.63809 deg (}=359.66414 deg v [SUM (ERRORS)?)=208089.63638547
ITERATION #1 R=6976.37418 kn Ecc=.81593 w=04.53338 deg I0=34.23148 deg Q=000.10470 deg v [SUM (ERRORS)2]=1989.44887953
ITERATION #2 A=6984.146008 kn Ecc=.02578 w=084.30858 deg I0=384.72687 deg £}=005.38340 deg v [SUM (ERRORS)?*]=1784.30766470
ITERATION #3 A=7001.23236 kn Ecc=.83438 w=085.26028 deg I0=35.26693 deg N=009.62111 deg v [SUM (ERRORS)?2]=1605.87646748
ITERATION #4 R=7823.14477 kn Ecc=.04188 w=86,72678 deg I0=35.64320 deg £3=011.73783 deg v [SUM (ERRORS)2]=1445.82945689
ITERATION #5 A=7047.51661 km Ecc=.84841 w=88.35383 deg I0=35.86671 deg =013.91808 deg v [SUM (ERRORS)?]=1380.14138118
ITERATION #6 A=7072.88632 kn Ecc=.05411 w=09.97658 deg I10=35.97578 deg £1=815.75416 deg v [SUM (ERRORS)2]=1169.78535455
ITERATION #7 A=7098.31449 kn Ecc=.85910 w=11.51927 deg I0=36.80527 deg {}=817.35192 deg v [SUM (ERRORS)2]=1852.31412419
ITERATION #8 A=7160.51885 kn Ecc=.870180 «w=15.88418 deg I0=35.94827 deg §=020.90512 deg v[SUM (ERRORS)t]=0946.67896590
ITERATION #9 A=7212.088151 kn Ecc=.087731 w=17.84513 deg I0=35.62406 deg =023.55637 deg vISUHM (ERRORS)?*]=9708.35808592
ITERATION #10 R=7254.11223 kn Ecc=.88248 w<19.81318 deg I0=85.33142 deg }=025.69427 deg v [SUM (ERRORS)®]=8538.82498350
ITERATION #11 A=7288.44822 kn Ecc=.88623 w=21,2024@ deg I0=35.13819 deg (}=027.41042 deg v[SUM (ERRORS)2)=0396.609082847
ITERATION #12 A=7316.43888 kn Ecc=.88921 ©=22.19628 deg I0=35.82999 deg )=028.75886 deg v [SUM (ERRORS)?]=0296.80689278
ITERATION #13 A=7339.12253 kn Ece=.09158 w=22.91851 deg Yo=34,97731 deg §)=029.79734 deg v[SUM (ERRORS)?])=0222.143163186
ITERATION #14 A=7357.31780 kn Ecc=.89347 =23.44940 deg Y0=34,95647 deg =030.58963 deg v [SUM (ERRORS)2]=0166.27911558
ITERATION #15 A=7371.75187 kn Ecc=.89497 w=23.84247 deg I0=34.95223 deg 0=031.1895@ deg v [SUM (ERRORS)2]=0124.47395496
ITERATION #16 A=7394.48775 kn Ecc=.89732 w=24.42709 deg I0=34.95924 deg 1=032.89412 deg v [SUM (ERRORS)2])=0093.18528045
ITERATION #17 A=7406.78486 kn Ecc=.89861 w=24,71584 deg I0=34.97549 deg =0832.54899 deg v [SUM (ERRORS)2]=0046.30368731
ITERATION #18 R=7413.29293 kn Ecc=.89929 w=24.85799 deg I0=34.98695 deg N=832.775%6 deg v[SUM (ERRORS)?2)=8023.02318822
ITERATION #19 A=7416.62822 kn Ecc=.09964 w=24.92917 deg I0=34.99342 deg 0)=032.868883 deg v {SUM (ERRORS)'%=BBII.45162358
ITERATION #20 A=7418.31822 kn Ecc=.89982 w=24,96465 deg I0=34.99676 deg £)=032.94487 deg v[SUM (ERRORS)?]=0005.69708321
ITERATION #21 A=7419.15825 kn Ecc=.89991 w=24.98236 deg I0=34.99843 deg }=632.97267 deg v[SUM (ERROURS)2]=0002.83453385
ITERATION #22 R=7419.58049 kn Ecc=.89995 w=24,99119 deg I0=34.99924 deg =032.98645 deg v [SUM (ERRORS)2]=8001.41037319
ITERATION #23 A=7420.00172 kn Ecc=.10000 w=25.80001 deg I0=35.00003 deg £=033.00912 deg v[SUM (ERRORS)?]}=0008.70177748
ITERATION #24 A=7420.08825 kn Ecc=.10000 w=25,88089 deg I0=35.600080 deg 3=033.08008 deg v [SUHM (ERRORS)2]=0008.00353182
ITERATION #25 A=7420.00026 km Ecc=.10008 w=25,008880 deg I0=35.80000 deg =033.88860 deg v [SUM (ERRORS)?]=0000.80081940
ITERATION #26 R=7428.00826 kn Ecc=.10008 w=25.00808 deg I0=35.00000 deg £=833.80800 deg v [SUM (ERRORS)2)=0@00.60000010

CONVERGED SOLUTION: R=7420.88826 kn Ecc=.10000 I 0=35.00080 deg w=25.88000 deg £3=33.08800 deg
v[SUM (ERRORS)*]=.00000010
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SEMI-MAJOR AXIS (R)=6019. KM,

18

TRUE ANOMOLY,
B8 £=154.990856464
1 £=159.84812332
2 f=164.13710554
3 £=160.04340171
4 £=171.69298062
5 f=175.178686710
6
7
8
9
1

DEG.

£=178.57269911
f=181,94118337
£=185.345308128
£=188.685039710
0 f=192,53242283
11 £=196.48778574
12 £=200.84937189
13 f=205.81589808
14 £=211.71203239
15 £=219,12843774

RADIUS, KM.

r=8327.03917718
r=8946.30401136
r=9434.24059567
r=9818.44038207
r=100899.63885244
r=10282.40302165
r=18369.54893382
r=18362.37915844
r=10268.78748541
r=10063.25051039
r=9766.70455942
r=9366.28463255
r=8854.87299320
r=B8222,35862730
r=7454.43313426
r=6530.64834910

Table 4. Second example.

ECC=.72428 INC(I)=.000 DEG., ARG. PERIGEE(w)=225.800 DEG., LONG. ASC. NODE(R)=.08@ DEG.
APPARITION OCCURS AT £=154.991 deg. [T=1128.749 sec.] AND OCCULTATION OCCURS RT £=219.128 deg. [7=3932.685 sec.]

RANGE, KHM.

p=5353.56799812
P=5316.69088146
P=5301.21356239
pP=5278.16143365
=5226.61914198
P=5131.41085411
P=4981.20243176
p=4767.10213487
P=4481.69994810
p=4118.50129078
P=3671.85978114
P=3137.99737918
P=2519.686143208
P=10846.25538555
P=1281.26945377
P=1403.73789664

AZIMUTH, DEG.
a=-90,00000080
a=-9@.08088000
0=~93.00808000
a=-90.00080808
a=-90.08000820
a=-93. 00006000
a=-90, 20000800
a=-98.00080000
a=-98, 00088000
«=-90.00000000
a=-90.60000000
11 o=-90.686000006
a=-98, 00008608
13 «=-98.080000000
14 «=-90.08080000
a=-98, 00808600

VONOCMTNLONHO

ELEVATION, DEG.
f=.80000600
$=9.31971328
B=17.40117751
B=24.44702159
$=30.66801485
$=36.263701868
B=41.41969757
p=46.31600587
$=51.14502534
p=56.14476239
B=61.66664772
p=68.337906782
B=77.526625486
$=87.085064752
p=125.84723511
$=179.99998791

LONGITUDE, DEG.
$=19.99056464
$=24.84812332
$=29.13710554
$=33.84348171
$=36.69290062
$=48.178086710
$=43.57269911
$=46.94118337
$=50.34530128
$=53.85839710
$=57.532422683
$=61.48778574
$=65.84937183
$=70.681589808
$=76.71203239
$=84.12843774

Table 5. Representative data of entire package sent to iterator.

ORIGINAL GUESSES: A=6378,80000 kn Ecc=.00008 Io=.00800 deg w=.

ITERATION
ITERARTION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERRTION
ITERRTION
ITERATION
ITERATION
ITERATION
ITERATION
ITERARTION
ITERATION
ITERATION
ITERRTION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERARTION
ITERATION
ITERATION
ITERARTION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION

(M, ®o, &, Oo, Ro ASSUMED KNOWN)

7=1128.74879014
T1=2526.67696021
7=3932.60513028

$=.000006060
p=48,72566711
p=179.939968791

ECC. ANGMHOLY,

€=121.97277148
£=132.08228159
£=141.58258033
€=158.64963478
€=159.41368293
£=167.97876649
€=176.431641706
£=184.85198369
€=193.31671190
£=201.90596867
£=210.78915695
£=219.83291254
£=229.41318922
£=239.63526416
£=258.77188362
£€=263.25619535

LATITUDE, DEG. LONGITUE (RADAR) DEG.
©=,00000000 $s=60.0600008000
©=.00000000 $3=68.78107121
©=.0606000080 $s=61.56214241
©=.00000000 $5=62.34321362
©=.06000000 $5=63.12428482
©=.008000080 ¢s=63.908535603
©=.00000080 $s=64.68642723
©=.00080006 $5=65.46749844
©=.06600008 $s=66.24856964
©=.06000080 $s=67.092964085
©=,00000000 #s=67.810712086
©=.000806006 $s=68.59178326
©6=.80800006 $s=69.37285447
©=.88000006 $s=78.15392567
©=.00080008 $s=78.93499688
©=.00880008 $s=71.71686888

Table 6. Results of iteration scheme.

#9:

#l:

#2:

#3:

#4:

#S:

#6:

#7:

#8:

#9:
#1e:
#11:
#12:
#13:
#14:
#15:
#16:
#17:
#18:
#19:
#20:
#21:
#22:
#23:
#24:
#25:
#26:
#27:
#28:
#29:
#30:
#31:
#32:
#33:
#34:
#35:

R=6377.82547
R=6377.65093
A=6377.47640
R=6377.30187
A=6377.476406
R=6377.30187
R=6377.47640
R=6377.30187
RA=6377.47640
A=6377.65093
A=6377.682547
R=6377.65693
A=6377.82547
R=6377.65093
A=6377.82547
A=6378.0800006
R=6378.00000
R=6377.82547
A=6378.060008
R=6377.82547
R=6378.06000
R=6378.00060
A=6377.82547
R=6378.00000
A=6378.00008
A=6378.00600
A=6378.080000
R=6378.00060
A=6378.00600
R=6378.008000
A=6377.82547
A=6378.00800
A=6377.82547
R=6378.06000806
A=6378.00000
A=6378.00000

kn
kn
kn
kn
kmn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
km
ke
kn
km
km
kn
kn
km
kn
kn
kn
kn
kn
kn
kn
kn
kn

Ecc=
Ecc=
Ecc=
Ecc=
Ecec=
Ecc=
Ecc=
Ecc=
Ecc=
Ecc=
Ece=
Ece=
Ecc=
Ecc=
Ece=
Ece=
Ecc=
Ece=
Ece=
Ecc=
Ece=
Ecc=
Ecc=
Ece=
Ecc=
Ece=
Ecc=
Ecc=
Ece=
Ecc=
Ecc=
Ece=
Ece=
Ecc=
Ecc=
Ecc=

.01009 w=246.53286
.110008 w=275.73814
.210008 w=243.58556
.31068 w=214.12451
.41000 w=258.37404
.51008 w=119.31538
.41000 w=161.91792
.310008 w=143.56112
.21866 w=002.73382
.11000 w=162.47098
.01008 w=218.38686
.11000 w=076.02424
.01000 w=066.90448
.11000 w=118.29@98
.01068 w=133.66279
.01900 w=118.56111
.01000 w=2208.70121
.11686 w=336.81249
.61808 w=056.21268
.11000 w=036.52690
.016080 w=187.39983
.81008 w=230.21842
.110088 w=097.93358
.010808 w=262.73277
.810008 w=B837.54403
.010080 w=074.54306
.01888 w=274.77163
.01000 w=847.80174
01000 w=322.64812
.0910808 w=862.38489
.11000 «w=116.39484
.01000 w=059.07265
.110080 w=354.23826
.01088 w=326.15469
.01080 w=028.42436
.81808 w=252.93388

deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg
deg

DEG.

TIME, SEC.

T=1120.74879014
T=13088.28587948
1=1495.66296882
7=1683.120805817
T=1870.57714751
1=2858.83423685
¥=2245.49132620
T=2432.94841554
T1=2620.408550488
1=2867.86259422
T=2995.31968357
T=3182.77677291
T=3378.23386225
T=3557.69095160
T=3745.14884094
1=3932.66513028

08080 deg )=.00008 deg

v ISUH
v sun
v sun
Y [SuM
v sut
v [SUH
v [SUM
vIsun
v [SuM
v{suM
v [sum
v [SUH
vsun
v [5ut
Y ISUM
v ISUM
v Isun
v {SUM
v[suM
Y ISuM
v [SUH
v'Isun
v [sum
Y [SuUH
v suM
v [SUM
vsun
v [SuM
vISUM
v [SUM
¥ £SUH
¥ [SUH
v [SUH
¥ [sun
¥ {SUH
v [SUM

(ERRORS) 2]=3342,25372396
(ERRORS) 2]=1797.98184467
{ERRORS) 2}=1563.56658865
(ERRORS) ]=0967.94274041
{ERRORS) 21=1210.41828906
{ERRORS) 2]=0862.33919423
(ERRORS) 2]=4237.085568753
(ERRORS) 2]=3587.49167198
(ERRORS) 21=39082.12313582
(ERRORS) 2]1=3642,75359697
(ERRORS) 2]=3958. 24358289
(ERRORS) 2]=1858.58353792
(ERRORS) 2]=4175.96923678
(ERRORS) 2]=5569.74171216
(ERRORS) 2]=3903.96875415
(ERRORS) 2]=3621.66570198
(ERRORS) 2]=3759. 25858461
(ERRORS) 2]=1828.42876689
(ERRORS) 2]=31@4.59657251
(ERRORS) 2]1=4543.88574404
(ERRORS) 2]1=4167.53932183
(ERRORS) 21=3783.94734648
(ERRORS) 2]=1756.34696722
(ERRORS) 21=3991.99814902
(ERRORS) 2}=1758.89479345
(ERRORS) 2]=4138.,43426753
(ERRORS) 2]=4115.86597338
(ERRORS) 2]=1855.81818369
(ERRORS) 2]=4360.17724884
(ERRORS) 2]=27@5, 93322268
(ERRORS) 2]=5573.56804375
(ERRORS) 2]=3864.88321216
(ERRORS) 2]1=4606 .71208298
(ERRORS) 2]=3371,70846483
(ERRORS) 2)=2762.87198362
(ERRORS) 21=3943,68348011



ITERATION
ITERATION
ITERATION
ITERATION
ITERRTION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERARTION
ITERARTION
ITERATION
ITERATION
ITERRTION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATICON
ITERATION
ITERRTION
ITERATION
ITERATICON
ITERATION
ITERATION
-ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION

Table 6. Results of iteration scheme (continued).

#36:
#37:
#38:
#33:
%40:
f4l:
#42:
#43:
#44:
#45:
#46:
#47:
#48:
#49:
#50:
#51:
#52:
#53:
#54:
#55:
#56:
#57:
#58:
#59:
#69:
#61:
#62:
' #63:
#64:
#65:
#66:
H67:
#68:
#69:
#78:
#71:
#72:
#73:
#74:
#75:
#76:
#77:
#78:
#79:
#80:
#81:
#82:
#83:
#64:
#65:
#96:
#87:
#88:
#89:
#90:
#91:
. #92:
#93:
#94:
#95:
#96:
#97:
#98:
#99:
#100:
#101:
#102:
#103:
#104:
#10S:
#106:
#107:

R=6378.060000
R=6377.82547
A=6378.0006008
R=6378.00000
R=6377.82547
A=6376.00009
R=6378.00000
A=6378.00000
A=6376.00000
A=6378.00000
A=6377.82547
R=6378.00008
A=6378.00000
A=6378,08000
R=6378.60000
A=6377.82547
A=6378.060006
R=6377.82547
A=6377.65093
R=6377.47640
A=6377.656893
RA=6377.47640
A=6377.30187
A=6377.12734
A=6377.30187
A=6377.47640
R=6277.47640
R=6177.47640
R=6877.47648
A=60062.18338
R=6022.73748
R=6816.76933
A=6028.10635
A=6017.88717
A=6019.36574
A=6818.32287
R=6019.081815
A=6018.55427
R=6618.86368
R=6018.65724
R=6018,79495
R=6018.703088
A=6018.76437

=6018.72348
A=6018.75075
A=60818.73256
A=60618.74478
A=6018.73660
A=60818.74200
R=6018.73840
fA=6018.74080
A=6018.73920
A=6018.74027
A=6018.73955
A=6018.74003
A=6018.73971
A=6818.73992
A=6018.73978
R=6018.73988
A=6018.73981
A=6018.73986
A=6018.73983
R=6018.73985
A=6018.73983
A=6018.73984
A=6018.73984
A=6818.73984
A=6018.73984
A=6018,73984
A=60618.73984
R=6018.73984
A=6018.73984

kn
km
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn

-kn

kn
kn
kn
km
kn
kn
kn
kn
kn
kn
kn
kn
km
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn
kn

Ecc=.01000
Ecc=.11000
Ecc=.01008
Ecc=.01660
Ecc=.11000
Ecc=.0106008
Ecc=.010808
Ecc=.081000
Ecc=.01000
Ecc=.01000
Ecc=.11000
Ecc=.01000
Ecc=.01000
Ecc=.01000
Ecc=.0810800
Ecc=.11000
Ecc=.21000
Ecc=.31000
Ecc=.410808
Ecc=.31600
Ecc=,410080
Ecc=.51000
Ecc=.610608
Ecc=.710069
Ecc=.81000
Ecc=.75529
Ece=.71739
Ecc=.71899
Ecc=.72094
Ecc=.72299
Ecc=.72463
Ecc=.72419
Ecc=.72433
Ecc=.72425
Ecc=.72436
Ecc=.72427
Ece=.72429
Ecc=.72427
Ecc=.72429
Ecc=.72428
Ecc=.72428
Ece=.72428
Ecc=.72428
Ecc=.72429
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ece=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72428
Ecc=.72429

w=0864.59755
«=125.081488
w=295.14937
w=859.07186
w=354.26307
w=325,54414
w=0834.50583
w=132.14604
w=121.086298
w=181.18194
«=894,81280
w=291.13616
w=146,17872
«=343.47329
«=218.86757
w=855.29646
w=048.84146
w=260.19538
w=038.99094
®w=211.81071
w=263.74250
w=0083.08813
w=312.47459
w=138.56418
«=213.83595
w=225.56000
w=224,33091
w=224.13317
«=224,66098
«=224.86027
w=225.13766
w=224.90929
w=225,085943
w=224,96852
w=225.02634
w=224,968242
w=225.01173
w=224.99218
w=225.008522
w=224.99652
w=225.80232
w=224,99845
»=225.00103
w=224,99931
w=225.00046
w=224.99969
w=225.00021
w=224,99986
«w=225.88009
w=224.99994
w=225,00004
w=224.99997
«w=225.080082
w=224.99999
w=225.00001
w=225,00000
w=225,008080
«=225.080660
«w=225.00000
w=225.00000
w=225.00000
w=225.080800
w=225,060000
w=225.00000
«=225.000008
w=225.60608
w=225.00000
»=225.00000
w=225.00008
«=225.080808
w=225.00000
w=225.00000

deg v [SUM
deg v [SUM
deg v ISUM
deg v [SUM
deg v I[SUM
deg v [SUM
deg v [SUM
deg v{SUM
deg v [SUM
deg ¥ [SUM
deg v [SUN
deg vISUM
deg v[SUM
deg v [SUM
deg v [SUN
deg ¥ [SUM
deg v {SUM
deg v [SUM
deg v{SUM
deg v [SUM
deg v [SUH
deg v [SUM
deg v [SUM
deg v{SUH
deg ¥ [SUN
deg v [SUM
deg ¥ [SUN
deg v'{SUN
deg v [SUN
deg v [SUM
deg v [SUM
deg v'{SUN
deg v'[SUM
deg ¥'[SUH
deg v ISUM
deg v {SUM
deg v [SUM
deg v [SUH
deg v {SUM
deg Y[SUM
deg v [SUM
deg vISUM
deg vSUN
deg v [SUM
deg v [SUN
deg v[SUM
deg v'[SUM
deg vSUM
deg v [SUH
deg v[SUM
deg v [S8UM
deg v {SUM
deg vISUM
deg VISUM
deg YISUM
deg v[SUM
deg v {SUM
deg v [SUN
deg Y[SUM
deg vISUM
deg v SUH
deg v[SUH
deg Y[8UM
deg vISUM
deg vISUM
deg v ISUM
deg v [SUM
deg v [5UM
deg v [SUM
deg vISUM
deg v'{sUM
deg v [SUN

(ERRORS)2]1=1715.94468123
(ERRORS) #]1=5579.52889429
(ERRORS) 2]=3814,22587824
(ERRORS) 2]=2112,08775784
(ERRORS) 2]1=4606 . 67699080
{ERRORS) 2]=3372.17423267
(ERRORS) #]1=2752.92595544
(ERRORS) 2] =4073.28820556
(ERRORS) 2]=3628.408253180
(ERRORS) *]=3687.178208436
(ERRORS) 2]1=3172.68797744
(ERRORS) 2]1=4015.96918752
(ERRORS) 2]=2053. 68258407
(ERRORS) 2]=3580.812684395
(ERRORS) #]=36838.67418247
{ERRORS) 2]1=1845.65847847
(ERRORS) 2]1=4523. 50969891
(ERRORS) 2]=4415.62354477
(ERRORS) 2]=0964 .67445113
(ERRORS) 21=4293.98179749
(ERRORS) 2]1=1283.330923873
(ERRORS) 2]=10811.94486805
(ERRORS) 2]=4456.22739218
(ERRORS) #]1=2377.68388719
(ERRORS) 2]1=3887.10052500
{ ERRORS) 2]=1258.86899995
(ERRORS) 2]=0468.12395739
(ERRORS) 2]=0330.28472467
(ERRORS) 2]=0217. 45002748
(ERRORS) ]1=0080.15408107
(ERRORS) 2]=0028 . 36231984
(ERRORS) 2]1=0008.576120811
(ERRORS) 2]=0005.34985398
{ ERRORS) 2]=0003 . 48845386
(ERRORS) 2]=0802 ;32481098
(ERRORS) 2]=0001 .551686925
(ERRORS) 2]1=0001 ,83537443
{ERRORS) 2]=0000. 69057852
(ERRORS) 2]1=8000 . 46877383
(ERRORS) t1=80800. 30736057
(ERRORS) t1=0000. 20586258
(ERRORS) $]=0000.13679661
(ERRORS) 2]=0000.89126299
(ERRORS) *]=0000, 86088258
(ERRORS) t1=8000.04061689
(ERRORS) 2)=6000.02709631
(ERRORS) *]=0000.81887675
(ERRORS) $]1=0008.61205941
(ERRORS) 21=0000.00804516
{ERRORS) t)=0000.00536712
(ERRORS) 2]=0000. 00358055
(ERRORS) *]1=0000 . 08238867
(ERRORS) 2]=0008. 08159355
(ERRORS) 2]=80088,80186385
(ERRORS) *]1=6000.00070922
(ERRORS) *3=0000. 00047314
(ERRORS) 2]=0000 . 000831564
{ERRORS) t]=0000.000821057
(ERRORS) 21=0000. 008014048
(ERRORS) 2]=60608 . 80809372
(ERRORS) *1=0006 . 60886252
(ERRORS) 2]=0008.00004171
(ERRORS) 2]1=0008. 00002783
(ERRORS) ]=0000. 008081856
(ERRORS) 21=0008. 868061238
{ERRORS) 2]=00608.80080826
(ERRORS) 2]=0000 . 00009551
(ERRORS) 2]=0000.00088368
(ERRORS) 2]=0000. 002808245
(ERRORS) 2}=0000. 08800164
(ERRORS) *]=0000 . 60000109
(ERRORS) )=0000 . 600000873

CONVERGED SOLUTION: A=6018.73984 km Ecc=.72428 10=.80088 deg w=225.0808000 deg N=.00000 deg
¥ [SUH (ERRORS)2]=.088000073
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A PLANE TANGENT TO THE EARTH AT THE RADAR SITE
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Figure 1. Coordinate systems showing azimuth () and elevation (f3).
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Figure 2. Orbital elements.
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Figure 3. B versus time for the example from table 1 (satellite).
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Figure 4. o versus time for the example from table 1 (satellite).
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Figure 5. p versus time for the example from table 1 (satellite).
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Figure 6. B versus time for the example from table 4 (ICBM).
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Figure 7. p versus time for the example from table 4 (ICBM).
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Figure 8. B versus time for 200 km range missile.
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